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In this paper is presented the derivation of the unconstrained variational statement for
initial value problems from the viewpoint of the Principle of Total Virtual Action. Based
on the hybrid form of the variational equation, both the Galerkin and the
recurrent-Galerkin procedures are developed. They are used to obtain approximate
analytical/semi-analytical solutions. Linear and non-linear vibration problems are used to
demonstrate the applications. Comparison between the results obtained with initial
conditions unconstrained and those with initial conditions constrained is made. Different
weighting functions are tried out to confirm the validity of the ‘‘hybrid’’ form of the
unconstrained variational statement.
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1. INTRODUCTION

The conventional numerical methods widely used for initial value problems are known as
direct integration methods, in which the solutions of differential equations of motion are
obtained in numerical form at discrete points by a step-by-step numerical integration
procedure. The word ‘‘direct’’ here implies that the integrations are carried out on the
differential equations directly. Many well-known methods, such as the central difference
method, the Houbolt method, the Wilson theta method, the Newmark beta method and
the Runge–Kutta method, all fall into this category [1, 2]. Zienkiewicz [3] simply presents
these methods in a unified way of finite element approximation in time dimension. On the
other hand, the Ritz method and the Galerkin method are known as direct methods in
the literature, where approximate analytical solutions are obtained directly by using
variational principles or statements without dealing with the differential equations [4]. The
advantage of direct methods lies in the fact that they yield solutions in terms of analytical
functions in the finite continuous time domain instead of numerical data at discrete points
of time. To the authors’ knowledge, not much attention has yet been given to this issue
in the literature.

The application of direct methods to initial value problems became possible only when
generalized variational statements for initial value problems could be successfully
developed. Based on a less constrained variational statement—Hamilton’s law of varying
action—Bailey [5] obtained approximate solutions for initial value problems via the Ritz
method, in which a truncated power series was used as the trial solution. Based on an
unconstrained variational statement—the extended Hamilton’s Principle—Simkins [6]
resumed the Ritz method. On the other hand, Leipholz [7] suggested a ‘‘hybrid’’ Galerkin
method in obtaining direct solutions for initial value problems, in which the weighting
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functions, although being constrained, could be chosen with greater flexibility. As for
non-linear/non-conservative oscillation problems, a Generalized Galerkin Method (GGM)
with frequency as an independent unknown was further developed by Chen [8, 9]. This
method has been resumed to solve some practical engineering problems by Desai et al.
[10].

The Principle of Total Virtual Action (PTVA) has been proposed by Chen [11] as a
unique foundation for all the constrained/unconstrained variational statements. The
‘‘hybrid’’ form of the variational statements constructed via PTVA can be used to support
the Galerkin method in obtaining approximate solutions for initial boundary value
problems. In this paper, the procedure of construcing the ‘‘hybrid’’ form of unconstrained
variational statement via PTVA for initial value problems will be outlined. Both linear and
non-linear oscillators are used to show the application of the Galerkin method in obtaining
approximate analytical solutions. In addition, the development of a recurrent-Galerkin
calculation procedure will be described. A discussion and conclusions on the proposed
procedures are also included.

2. PRINCIPLE OF TOTAL VIRTUAL ACTION AND HYBRID FORM OF
UNCONSTRAINED VARIATIONAL STATEMENT

Similar to the Principle of Virtual Work in Statics, being proposed as an axiom
in dynamics, the Principle of Total Virtual Action for initial value problems states
that:

For a given initial value problem, the actual motion path is such that for any
unconstrained virtual displacements the total virtual action of the system vanishes.

In order to provide a clear physical interpretation of the principle, a single-degree-of-
freedom system with q being the generalized co-ordinate is considered. Given the initial
values q0 and v0 at t0, q̃ is assumed to be the trial solution in a time interval (t0, t1), where
the prescribed initial conditions are not required to be satisfied. Given an arbitrary
unconstrained virtual motion deviation dq̃ from q̃ (being unconstrained, dq̃ is not required
to satisfy dq̃ (t0)=0 and dq̃(t1)=0), the total virtual action of the system in a finite time
interval (t0, t1) due to the virtual displacement would consist of three parts:

(i) Virtual Hamilton’s Action in the time inverval (t0, t1):

dAH = d g
t1

t0

L dt=g
t1

t0
01L

1q̃�
dq̃� +

1L
1q̃

dq̃1 dt, (1)

where L=T−V, L is the Lagrangian, T= 1
2mq̃� 2 kinetic energy, and V is the potential

energy of the system.
(ii) Virtual Action due to external forces in the time interval (t0, t1):

dAf =g
t1

t0

fdq̃ dt, (2)

where f is a non-potential force since the potential ones are already considered in potential
energy V.
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(iii) Virtual Action at the time termini. This is the most subtle part of the virtual action.
It can be written as

dAt = {mq̃� (t0)−m[q̃� (t0)− v0]}dq̃(t0)+mdq̃� (t0)[q̃(t0)− q0]

−{mq̃� (t1)−m[q̃� (t1)− v1]}dq̃(t1)−mdq̃� (t1)[q̃(t1)− q1], (3a)

where the first terms can be considered as the ‘‘gain’’ of the virtual action due to dq̃(t0)
and dq̃� (t0) at t0, and the other two terms the ‘‘loss’’ due to dq̃(t1) and dq̃� (t1) at t1. Here
m[q̃� (t0)− v0] and m[q̃� (t1)− v1] are considered as the ‘‘residual linear momentum’’ at t0 and
t1, and [q̃(t0)− q0] and [q̃(t1)− q1] the displacement deviations at t0 and t1, respectively.
Clearly, at t0 the residual linear momentum and displacement deviations are not supposed
to be zero, since q̃ is not required to satisfy the initial conditions. However, since q1 and
v1 are not prescribed, there is neither a residual linear momentum nor a displacement
deviation at t1. Therefore equation (3a) becomes

dAt =mv0dq̃(t0)+mdq̃� (t0)[q̃(t0)− q0]−mq̃� (t1)dq̃(t1). (3b)

It is noticed that if the trial function q̃ can be chosen such that q̃(t0)= q0, and at the
termini

dq̃(t0)=0 and dq̃(t1)=0, (4a, b)

then dAt , the virtual action at the termini of the time domain, vanishes. From the viewpoint
of the conventional variational theorem, where q̃ and dq̃ are related, it is possible to choose
a particular trial function q̃ such that condition (4a) is satisfied. However, it is not possible
to meet (4b) by choosing the trial function. This is why the conventional Hamilton’s
principle cannot be used to support the direct method procedure [5].

From the viewpoint of the Principle of Total Virtual Action, the necessary and sufficient
condition for q̃ to be the actual motion path is that for any arbitrary virtual displacement
dq̃ the total virtual action vanishes:

dAT = dAH + dAf + dAt =0 (5a)

or

dAT =g
t1

t0
01L

1q̃�
dq̃� +

1L
1q̃

dq̃+ fdq̃1 dt+mv0dq̃(t0)+mdq̃� (t0)[q̃(t0)− q0]−mq̃� (t1)dq̃(t1)=0,

(5b)

which is called the unconstrained variational statement for the initial value problem.
The significance of ‘‘unconstrained’’ lies in the following two points: (i) the trial solution

of the motion q̃ is totally unconstrained, and so it is possible to choose any
suitable functions without having to satisfy the initial conditions; (ii) the variation dq̃ is
also totally unconstrained, and therefore it can simply be denoted by an arbitrary function
oh(t), with o being a small positive constant, and equation (5b) can then be rewritten in
a ‘‘hybrid’’ form of unconstrained variational statement:

DAT =g
t1

t0
01L

1q̃�
ḣ+

1L
1q̃

h+ fh1 dt+mv0h(t0)+mḣ(t0)[q̃(t0)− q0]−mq̃� (t1)h(t1)=0, (6)

The word ‘‘hybrid’’ means that h(t) can be any arbitrary function which is totally unrelated
to the trial function q̃.
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Equations (5b) or (6) serve as the governing variational equations for initial value
problems in such a direct way that the differential equation of the motion and the initial
conditions are embedded implicitly. An alternative expression is obtained by integrating
equation (5b) by parts:

dAT =g
t1

t0
0−d

dt 01L
1q̃� 1+

1L
1q̃

+ f 1dq̃ dt−m[q̃� (t0)− v0]dq̃(t0)+mdq̃� (t0)[q̃(t0)− q0]=0, (7)

and its corresponding ‘‘hybrid’’ form

DAT =g
t1

t0
0−d

dt 01L
1q̃� 1+

1L
1q̃

+ f1h dt−m[q̃� (t0)− v0]h(t0)+mḣ(t0)[q̃(t0)− q0]=0, (8)

where the differential equation of motion and initial conditions are seen to be coupled
explicitly. Clearly, the ‘‘hybrid’’ form given in equation (6) or equation (8) can be used
as a foundation of the Galerkin method simply by treating the arbitrary function h as the
weighting function.

3. THE GALERKIN PROCEDURE FOR AN ANALYTICAL SOLUTION

To show the potential application of the Galerkin method based on the PTVA to initial
value problems for obtaining approximate analytical solutions, two simple examples are
used to demonstrate the solution procedure.

3.1.  1
Consider a one-DOF linear mass–spring system with mass m, and spring stiffness k.

Letting m=1, and k=4p2, the Lagrangian becomes

L= 1
2mq̃� 2 − 1

2kq̃2 = 1
2q̃�

2 −2p2q̃2. (9)

Substituting equation (9) into equation (8) yields the ‘‘hybrid’’ unconstrained variational
statement:

DAT =g
t1

t0

(−4p2q̃− q̃� )h dt−[q̃� (t0)− v0]h(t0)+ [q̃(t0)− q0]ḣ(t0)=0. (10)

Ignoring the inital conditions, q̃=A cos vt is assumed to be the trial periodic solution
and the time interval is chosen to be one period (t, t+2p/v). Equation (10) then becomes

DAT =g
t+2p/v

t

(−4p2A cos vt+Av2 cos vt)h dt

−[−Av sin vt− v0]h(t)+ [A cos vt− q0]ḣ(t)=0, (11)

where in addition to the unknowns A and v, the starting point t0 = t is also treated as
an unknown. If the three weighting functions are chosen to be 1, sin vt and cos vt,
respectively, the three algebraic equations are as follows:

(i) for h1 =1,

v0 +Av sin vt=0; (12a)
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(ii) for h2 = sin vt,

v0 sin vt+Av− q0v cos vt=0; (12b)

(iii) for h3 = cos vt,

(−4p2A+Av2)(p/v)+ v0 cos vt+ q0v sin vt=0. (12c)

Solving the above simultaneous equations yields

v=2p, A=X0 v0

2p1
2

+ q2
0 , t=

1
2p

tan−1 0− 1
2p

v0

q01. (13a–c)

If the initial values q0 and v0 are considered to be given at t=0, then the solution can
just be expressed as q̃(t)=A cos v(t+ t).

In general, for initial value problems having periodic solutions, the trial solution may
be assumed in the form of Fourier series:

q̃=A0 + s
N

n=1

(An cos nvt+Bn sin nvt), (14)

with 2N+1 unknown coefficients (An and Bn ) and unknown frequency v. The time
interval of the integration may be set to (0, 2p/v). Theoretically, 2N+2 algebraic
equations could be formulated by choosing 2N+2 weighting functions for solving all the
unknowns.

3.2.  2
Consider the free oscillation of a non-linear Duffing’s oscillator with m=1 and k=1,

the Lagrangian being

L= 1
2q̇

2 − 1
2q

2 − 1
4oq

2 (with oW 1). (15)

The ‘‘hybrid’’ form of unconstrained variational statement (8) in this case becomes

DAT =g
t1

t0

(−oq̃3 − q̃− q̃� )h dt−[q̃� (t0)− v0]h(t0)+ [q̃(t0)− q0]ḣ(t0)=0. (16)

Let the initial conditions be

q(0)= q0, q̇(0)= v0 =0. (17a, b)

Assume that the trial solution is

q̃=A cos vt+B cos 3vt, (18)

which is not required to satisfy the initial displacement condition (17a) at this stage.
Choosing the integration interval to be (0, p/v), and substituting equation (18) into
equation (16), yields

g
p/v

0

{A(1−v2) cos vt+B(1−9v2) cos 3vt+ o[A3 cos3 vt+3A2B cos2 vt cos 3vt

+3AB2 cos vt cos2 3vt+B3 cos3 3vt]}h dt+[q0 − (A+B)]ḣ(0)=0, (19)
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in which there are three unknowns, A, B and v. If the three weighting functions are chosen
to be cos vt, cos 3vt and sin vt, respectively, three algebraic equations can be obtained
as follows:

(i) for h1 = cos vt,

v2 =1+ 3
4oA

2 + 3
4oAB+ 3

2oB
2; (20a)

(ii) for h2 = cos 3vt,

9Bv2 =B+ o(1
4A

3 + 3
2A

2B+ 3
4B

3); (20b)

(iii) for h3 = sin vt,

A+B= q0. (20c)

Using expressions (20a) for v2 in equation (20b) shows that B should be in the form
of ob. Substituting B= ob and A= q0 − ob into equation (20b), and omitting O(o2) terms,
gives

b= 1
32q

3
0 . (21)

Consequently, we have

A= q0 − 1
32oq

3
0 , B= 1

32oq
3
0 , v2 =1+ 3

4oq
2
0 . (22a–c)

The approximate solution of the Duffing’s oscillator is thus obtained as [8]

q̃=(q0 − 1
32oq

3
0 ) cos vt+ 1

32oq
3
0 cos 3vt. (23)

For non-linear oscillations, the simultaneous algebraic equations are non-linear. The
approximate procedure shown in the above example is applicable only for weakly
non-linear cases (oW 1). For highly non-linear cases, a numerical technique should be used
for solving the series of non-linear simultaneous algebraic equations.

4. A RECURRENT-GALERKIN PROCEDURE FOR A SEMI-ANALYTICAL SOLUTION

For general initial value problems, the procedure proposed in the last sections faces two
difficulties: (i) the motion may not be periodic, and so the trial solution cannot be assumed
in a simple form; (ii) if the time domain concerned is large, it is almost impossible to obtain
an analytical expression for the whole domain.

To overcome the first difficulty, the trial solution could be assumed in the form of a
truncated Taylor’s series [6]

q̃(t)=X1 +X2t+ s
N

i=3

Xit(i−1), (24)

with the initial conditions unconstrained. The N unknown coefficients Xi in equation (24)
could then be determined by solving N Galerkin algebraic equations, constructed by using
the governing variational equation (8) with N suitable weighting functions. To deal with
the second difficulty, the time domain concerned could be divided into a number of finite
intervals (0, D), (D, 2D), (2D, 3D), etc., and the approximate solutions could then be
determined for each segment of time. When the solution for the first segment is obtained,
the displacement and the velocity at the end of the segment can be used as the initial
conditions for the following one. By carrying on with this recurrent procedure, a
‘‘piecewise’’ semi-analytical solution can be obtained for the whole time domain. In this
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section, the two examples (a free/forced linear mass–spring system and a forced Duffing’s
oscillator) are used to demonstrate the newly developed recurrent-Galerkin procedure for
obtaining semi-analytical solutions.

4.1. - 

Consider, a one-DOF linear mass–spring system, with m the mass, k the spring stiffness,
c the damping coefficient, and F(t) the force function. The ‘‘hybrid’’ form of unconstrained
variational statement (8) can be written as

DAT =g
t1

t0

(−mq̃� − cq̃� − kp̃+F(t))h dt−m(q̃� (t0)− v0)h(t0)+m(q̃(t0)− q0)ḣ(t0)=0;

(25a)

i.e.,

g
t1

t0

(mq̃� + cq̃� + kq̃)h dt+mq̃� (t0)h(t0)−mq̃(t0)ḣ(t0)=g
t1

t0

F(t)h dt+mv0h(t0)−mq0ḣ(t0).

(25b)

For solving N unknown coefficients Xi , N weighting functions are chosen to be

hj = t( j−1), j=1, 2, . . . , N. (26)

Substituting equations (24) and (26) into equation (25b), and carrying out the
integrations in segment (0, D), leads to N linear algebraic equations

s
N

i=1

AjiXi =Bj , j=1, . . . , N, (27)

where Aji is an N×N matrix:

Aji =m
(i−1)(i−2)

i+ j−3
Di+ j−3 + c

i−1
i+ j−2

Di+ j−2 + k
1

i+ j−1
Di+ j−1, (28a)

with

A12 =A12 +m, A21 =A21 −m, (28b)

and

Bj =g
D

0

F(t)hj dt, (29a)

with

B1 =B1 +mv0, B2 =B2 −mq0. (29b)

A FORTRAN program (program A with initial conditions unconstrained) has been
developed for solving the series of N linear algebraic equations. As for the integration in
equation (29a), a Simpson integration method with an accuracy control parameter EPS
is used. Once the approximate solution in the time interval (0, D) is obtained, both q̃(D)
and q̃� (D) become the initial conditions for the subsequent interval (D, 2D). The process
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T 1

Results for the case q̈+0·4q̇+ q=0 by program A with initial conditions unconstrained:
D=0·7855, N=6, q0 =1·0, v0 =0·0

M t q̃(t) q̃� (t) q̃� (t) R(t) q(t)

1 0·000000 1·000000 −0·000009 −0·999816 0·000180 1·000000
0·196375 0·981274 −0·187648 −0·906225 −0·000010 0·981251
0·392750 0·927686 −0·354186 −0·786009 0·000003 0·927642
0·589125 0·843851 −0·495047 −0·645833 −0·000001 0·843790
0·785500 0·735153 −0·606966 −0·492362 0·000005 0·735078

2 0·785500 0·735153 −0·606939 −0·492870 −0·000494 0·735078
0·981875 0·607490 −0·687995 −0·332266 0·000026 0·607404
1·178250 0·467013 −0·737461 −0·172031 −0·000003 0·466920
1·374625 0·319883 −0·755935 −0·017513 −0·000003 0·319787
1·571000 0·172042 −0·745063 0·125945 −0·000038 0·171947

3 1·571000 0·172041 −0·745024 0·125231 −0·000738 0·171947
1·767375 0·029010 −0·707475 0·254019 0·000039 0·028919
1·963750 −0·104289 −0·646561 0·362908 −0·000006 −0·104373
2·160125 −0·223663 −0·566356 0·450202 −0·000004 −0·223737
2·356500 −0·325751 −0·471269 0·514207 −0·000051 −0·325813

4 2·356500 −0·325752 −0·471240 0·513703 −0·000545 −0·325813
2·552875 −0·408084 −0·365947 0·554492 0·000029 −0·408133
2·749250 −0·469111 −0·255045 0·571124 −0·000005 −0·469145
2·945625 −0·508185 −0·143100 0·565423 −0·000002 −0·508205
3·142000 −0·525521 −0·034317 0·539213 −0·000035 −0·525526

is repeated for all of the time intervals. By using this recurrence procedure, a piece-by-piece
analytical solution of the initial value problem can be obtained for any required time
domain. Case studies of different system parameters (m, c, k) and initial conditions by
using different orders of polynomial (N) and basic time intervals D have been carried out
and are reported in [12]. As an example, the approximate solution of q̃, and q̃� for the system
q̈+0·4q̇+ q=0 is given in Table 1 and plotted in Figure 1. The squares are the conjoint

Figure 1. The solution of the case q̈+0·4q̇+ q=0, with q0 =1·0, v0 =0·0 and D=0·7855. ———, q(t); ----,
q̇(t).
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T 2

Comparison of results for the case q̈+0·4q̇+ q=0 with different values of N: D=0·7855,
q0 =1·0, v0 =0·0

N=5 N=6 N=7
ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

M t q̃(t) R(t) q̃(t) R(t) q̃(t) R(t)

1 0·000000 0·999962 −0·012066 1·000000 0·000180 1·000000 0.000061
0·196375 0·981280 −0·000889 0·981274 −0·000010 0·981274 −0·000004
0·392750 0·927673 0·000946 0·927686 0·000003 0·927686 0·000002
0·589125 0·843845 −0·000547 0·843851 −0·000001 0·843851 −0·000001
0·785500 0·735144 0·001288 0·735153 0·000005 0·735153 −0·000003

2 0·785500 0·735113 −0·010316 0·735153 −0·000490 0·735153 0·000036
0·981875 0·607485 −0·000679 0·607490 0·000026 0·607490 −0·000002
1·178250 0·466991 0·000753 0·467013 −0·000003 0·467013 0·000001
1·374625 0·319867 −0·000442 0·319883 −0·000003 0·319883 −0·000001
1·571000 0·172024 0·000991 0·172042 −0·000038 0·172043 −0·000002

3 1·571000 0·172013 −0·003851 0·172041 −0·000740 0·172043 0·000000
1·767375 0·028993 −0·000184 0·029010 0·000039 0·029010 0·000000
1·963750 −0·104311 0·000234 −0·104290 −0·000006 −0·104289 0·000000
2·160125 −0·223686 −0·000143 −0·223660 −0·000004 −0·223663 0·000000
2·356500 −0·325770 0·000275 −0·325750 −0·000051 −0·325750 0·000000

4 2·356500 −0·325760 0·002808 −0·325750 −0·000550 −0·325750 −0·000026
2·552875 −0·408103 0·000270 −0·408080 0·000029 −0·408083 0·000002
2·749250 −0·469122 −0·000263 −0·469110 −0·000005 −0·469110 −0·000001
2·945625 −0·508196 0·000147 −0·508190 −0·000002 −0·508185 0·000001
3·142000 −0·525528 −0·000386 −0·525520 −0·000035 −0·525520 0·000001

points between the neighboring segments, numbered by M. Since, for any segment, q̃(t)
in the form of equation (24) is available, the velocity and acceleration at any point in the
time domain can be calculated by using the analytical expressions derived from equation
(24). This is obviously one of the advantages of the direct method over the conventional
numerical integration methods. Moreover, to estimate the accuracy of the solution, a
residue function is defined, as

R(t)=mq̃� + cq̃� + kq̃−F(t), (30)

and this is also listed in Table 1. The smaller the R(t), the better the motion equation is
being approximately satisfied. For comparison, the exact solution q(t), is also given in the
last column of Table 1.

As expected, increasing N and/or reducing the length of segments of time improves the
accuracy substantially (see Tables 2 and 3).

The solutions obtained are not piecewise, as shown in Table 2 when N is smaller or in
Table 3 when D is larger. This is due to the release of the initial conditions in the governing
equation (25a), and so the solutions of the coefficients X1 and X2 are not usually equal to
q0 and v0, respectively. Hence, there are discontinuities in displacement as well as in velocity
at all conjoint points between any two neighboring segments. The discontinuities can be
removed by assuming [5] that

q̃(t)= q0 + v0t+ s
N

i=3

Xit(i−1) (31)



.   . 466

with the initial conditions constrained. Then, equation (25a) is reduced to

g
t1

t0

[mq̃� + cq̃� + kq̃−F(t)]h dt=0. (32)

For solving the N−2 unknown coefficients Xi , only N−2 weighting functions are
needed:

hj = t( j−1), j=1, 2, . . . , N−2. (33)

A FORTRAN program (program B with initial conditions constrained) has also been
complied for this issue. Piecewise solutions can be obtained following the same
recurrent-Galerkin procedure. The solution for the aforementioned case is shown in
Table 4. For comparison, in Table 5 are provided two sets of solution obtained by both
programs A and B for a forced vibration system q̃� +0·4q̃� + q=0·5 cos 0·5t.

One might expect that program B would give a better solution, since the initial
conditions are strictly satisfied. However, from Table 5, the results of program A are
always better than those of program B in the sense of having smaller residues, except at
the starting points of each segment. If the data at all of the starting points are ignored,
as they are redundant, and those at all of the end points of the segments are adopted
instead, the discontinuities in the results of program A can then be ‘‘smoothed’’. In this
way, a better piecewise solution for the problem is resulted. Here, ‘‘better’’ means that the
solution satisfies the equation of motion better. It is seen that for the program A, the
‘‘fuzziness’’ of initial conditions (unconstrained) is rewarded with a better accuracy for the
motion equation, whereas the strict satisfaction of initial conditions (constrained) as in
program B receives a ‘‘penalty’’ in the form of a loss of accuracy.

T 3

Comparison of results for the case q̈+0·4q̇+ q=0, with different time intervals: N=6,
q0 =1·0, v0 =0·1

D=3·142 D=1·571 D=0·7855
ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

t q̃(t) R(t) q̃(t) R(t) q̃(t) R(t)

0·0000 0·996628 −0·143013 0·999979 −0·002977 1·000000 0·000180
0·3927 0·928518 −0·033031 0·927682 0·000139 0·927686 0·000003
0·7855 0·734118 0·007414 0·735147 0·000012 0·735153 0·000005
1·1783 0·465156 0·009590 0·467008 −0·000057 0·467013 −0·000003
1·5710 0·170943 −0·000724 0·172036 −0·000396 0·172042 −0·000038
1·9637 −0·104642 −0·006247 −0·104306 0·000565 −0·104290 −0·000006
2·3565 −0·326163 −0·001211 −0·325769 −0·000091 −0·325750 −0·000051
2·7492 −0·469640 0·005628 −0·469126 −0·000046 −0·469110 −0·000005
3·1420 −0·525564 −0·012027 −0·525538 −0·000683 −0·525520 −0·000035

3·1420 −0·523831 0·072747 −0·525529 0·001105 −0·525520 −0·000130
3·5347 −0·499890 0·017055 −0·499685 −0·000048 −0·499670 −0·000002
3·9275 −0·406237 −0·003751 −0·407173 −0·000011 −0·407170 −0·000005
4·3202 −0·269268 −0·004986 −0·270733 0·000028 −0·270730 0·000001
4·7130 −0·114887 0·000331 −0·115975 0·000180 −0·115980 0·000019
5·1057 0·033263 0·003250 0·032632 −0·000303 0·032618 0·000003
5·4985 0·155576 0·000659 0·155035 0·000048 0·155016 0·000027
5·8912 0·238251 −0·002946 0·237793 0·000026 0·237775 0·000003
6·2840 0·275064 0·006316 0·275013 0·000372 0·274995 0·000019
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T 4

Results for the case q̈+0·4q̇+ q=0 by program B with initial conditions constrained:
D=0·7855, N=6, q0 =1·0, v0 =0·0

M t q̃(t) q̃� (t) q̃� (t) R(t) q(t)

1 0·000000 1·000000 0·000000 −0·999953 0·000047 1·000000
0·196375 0·981274 −0·187650 −0·906224 −0·000010 0·981251
0·392750 0·927685 −0·354185 −0·785997 0·000014 0·927642
0·589125 0·843851 −0·495046 −0·645844 −0·000012 0·843790
0·785500 0·735153 −0·606966 −0·492337 0·000030 0·735078

2 0·785500 0·735153 −0·606966 −0·492460 −0·000093 0·735078
0·981875 0·607490 −0·687990 −0·332264 0·000030 0·607404
1·178250 0·467013 −0·737463 −0·172066 −0·000038 0·466920
1·374625 0·319883 −0·755936 −0·017480 0·000028 0·319787
1·571000 0·172043 −0·745063 0·125875 −0·000108 0·171947

3 1·571000 0·172043 −0·745063 0·125834 −0·000148 0·171947
1·767375 0·029010 −0·707467 0·254020 0·000044 0·028919
1·963750 −0·104288 −0·646563 0·362857 −0·000057 −0·104373
2·160125 −0·223663 −0·566358 0·450250 0·000043 −0·223737
2·356500 −0·325750 −0·471268 0·514104 −0·000154 −0·325813

4 2·356500 −0·325750 −0·471268 0·514143 −0·000114 −0·325813
2·552875 −0·408083 −0·365940 0·554492 0·000032 −0·408133
2·749250 −0·469110 −0·255047 0·571086 −0·000042 −0·469145
2·945625 −0·508185 −0·143101 0·565458 0·000033 −0·508205
3·142000 −0·525520 −0·034318 0·539137 −0·000110 −0·525526

4.2.     

For a general forced Duffing oscillator, the ‘‘hybrid’’ form of unconstrained variational
statement (8) is

DAT=g
t1

t0

(−okq̃3−kq̃− cq̃� −mq̃� +F(t))h dt−m(q̃� (t0)− v0)h(t0)+m(q̃(t0)− q0)ḣ(t0)=0.

(34)

By denoting

F(n)(q̃, t)=−okq̃3 +F(t), (35)

equation (34) can be rewritten as

g
t1

t0

(mq̃� + cq̃� + kq̃)h dt+mq̃� (t0)h(t0)−mq̃(t0)ḣ(t0)

=g
t1

t0

F(n)(q̃, t)h dt+mv0h(t0)−mq0ḣ(t0), (36)

which is similar to equation (25b). Substituting expressions (24) and (26) into equation
(36), and carrying out the integrations in the segment (0, D) leads to N non-linear algebraic
equations
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s
N

i=1

A*ji Xi =B*j (X1, X2, . . . , XN ), j=1, . . , N, (37)

where A*ji =Aji as given in equations (28a) and (28b), and

B*j =Bj +B(n)
j . (38)

Here Bj is the same as in equations (29a) and (29b), and

B(n)
j (X1, X2, . . . , XN )=g

D

0

(−okq̃3)hj dt. (39)

Based on the above formulation, a FORTRAN program C has been compiled to solve
the non-linear problem by an iteration method. During the iteration, the value of q̃
obtained in the previous loop is used in equation (39) for the next loop. The process is
repeated until required convergence is reached. Taking a forced Duffing oscillator
q̃� +0·4q̃� + q̃+0·5q̃3 =0·5 cos (0·5t) as an example, and letting N=6 and D=1·0, the
motion for two different initial conditions are obtained. The results are shown in Figures 2
and 3. It can be seen that, after a short period, the motion paths of the non-linear oscillator
converge to the same periodic loop.

4.3.   

The ‘‘hybrid’’ form of unconstrained variational statement (6) or (8) allows the
weighting functions to be totally unlinked to the trial solution. Therefore, other weighting

T 5

Comparison of results for the case q̈+0·4q̇+ q=0·5 cos 0·5t with initial conditions
unconstrained or constrained: D=1·5710, N=6, q0 =1·0, v0 =0·0, EPS=1·0E−5

Program A Program B
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

M t q̃(t) R(t) q̃(t) R(t)

1 0·0000 0·999987 −0·002076 1·000000 −0·000319
0·3927 0·963721 0·000108 0·963721 0·000129
0·7855 0·865755 −0·000002 0·865764 −0·000156
1·1783 0·724845 −0·000027 0·724846 0·000112
1·5710 0·560565 −0·000200 0·560568 −0·000514

2 1·5710 0·560549 −0·003294 0·560568 −0·000762
1·9637 0·390697 0·000216 0·390701 0·000216
2·3565 0·229331 −0·000050 0·229347 −0·000276
2·7492 0·085805 −0·000006 0·085805 0·000212
3·1420 −0·035437 −0·000237 −0·035433 −0·000723

3 3·1420 −0·035428 0·001183 −0·035433 0·000147
3·5347 −0·134254 −0·000030 −0·134251 −0·000063
3·9275 −0·213680 −0·000011 −0·213685 0·000077
4·3202 −0·278510 0·000017 −0·278512 −0·000053
4·7130 −0·333853 0·000089 −0·333857 0·000251

4 4·7130 −0·333849 0·001424 −0·333857 0·000391
4·1057 −0·383906 −0·000139 −0·383912 −0·000112
5·4985 −0·431097 0·000049 −0·431107 0·000146
5·8912 −0·475640 −0·000008 −0·475642 −0·000113
6·2840 −0·515602 0·000152 −0·515606 0·000381
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Figure 2. The solution of the case q̈+0·4q̇+ q+0·5q3 =0·5 cos 0·5t with q0 = v0 =0·0 and D=1·0.

functions may be used instead of equation (26). Leipholz [7] used linear combinations of
power functions (e.g., t3 − t2), which were intentionally made to satisfy h(0)=0. Here the
exponential functions

hj =elj t, j=1, 2, . . . , N, (40)

are used as the alternative weighting functions for the same linear mass–spring system. A
FORTRAN program D with initial conditions unconstrained is compiled, based on the
new formulations presented in the Appendix. By choosing lj = j−1 (i.e., choosing the
weighting functions to be 1, et, e2t, etc.) and using the same input data, the results obtained
by program D are as accurate as those obtained by program A. Furthermore, let the
various sets of weighting functions be labelled as follows:

(a) tj−1, (b) e( j−N/2)t, (c) e( j−1)t, (d) e2( j−1)t, (e) e3( j−1)t. (41)

The accuracy of the results obtained by using these weighting functions is presented in
Table 6. The maximum absolute residues of the approximate solutions for the case
concerned are used to represent the accuracy.

Figure 3. The solution of the case q̈+0·4q̇+ q+0·5q3 =0·5 cos 0·5t with q0 =1·0, v0 =0·0 and D=1·0.
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T 6

Comparison of results for the case q̈+0·4q̇+ q=0 with different sets of weighting functions
(see text): D=1·5710, N=6, q0 =1·0, v0 =0·0

Weighting functions (a) (b) (c) (d) (e)

R(t)Q 7×10−4 6×10−4 4×10−4 8×10−4 2×10−3

There may be an optimization rule for choosing weight functions to yield the best results
for the procedure. This is indeed a challenge for future research, to answer how an
optimized set of weighting functions can be constructed for a particular problem.

4.4.    - 

The ‘‘hybrid’’ form of unconstrained variational statement (8) for one-DOF problems
can be further extended to suit N-DOF problems:

DAT =g
t1

t0

Eihi dt−mi [q̃� i (t0)− vi0]hi (t0)+miḣi (t0)[q̃i (t0)− qi0]=0, (42a)

where

Ei =Ei (q1, q2, . . . , qN)=−
d
dt 01L

1q̃� i1+
1L
1q̃i

+ fi , (42b)

and qi0 and vi0 are the given initial conditions for each generalized co-ordinate. In equation
(42a) the familiar summation convention over the subscripts (i=1, 2, . . . , N) is used, and
therefore it is a scalar equation. Since the weighting functions h’s are arbitrary, for each
generalized co-ordinate, we can choose a non-zero weighting function for it, and for the
rest we choose zero. Thus, for one weighting function we can have N algebraic equations
in the form of equation (42a). Moreover, if M different non-zero weighting functions hj

are to be used, we can have an M×N matrix form of equation (42a) as follows:

DAij
T =g

t1

t0

Eihj dt−mi [q̃� i (t0)− vi0]hj (t0)+miḣj (t0)[q̃i (t0)− qi0]=0. (43)

Let the trial solutions, for example, be assumed as

q̃i (t)=Xi1 +Xi2t+ s
M

j=3

Xijt( j−1), i=1, 2, . . . , N (44)

with M×N unknown coefficients Xij , and let M weighting functions be chosen as

hj = t( j−1), j=1, 2, . . . , M. (45)

Substituting equations (44) and (45) into equations (43), and carrying out the integrations
in segment (0, D) leads to M×N algebraic equations for solving the M×N unknown
coefficients. Based on the recurrent-Galerkin procedure, a FORTRAN program for
two-DOF systems is also developed, and various linear and non-linear cases are
successfully studied and reported in reference [13].
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5. CONCLUSIONS

The Principle of Total Virtual Actions has been proposed as the fundamental axiom for
the construction of the unconstrained variational statement for initial value problems.
Emphasis is given to the physical interpretation for the third part of the virtual action at
the time termini. The obtained ‘‘hybrid’’ form of the governing variational equation (8),
as well as equation (43), in which the differential equations of motion and initial conditions
are embedded, can be treated as a foundation of the Galerkin method. A typical Galerkin
procedure is introduced to obtain approximate periodic solutions in analytical form for
a simple linear mass–spring system and a weakly non-linear Duffing oscillator. For more
general cases (e.g., transient solutions), a truncated Taylor series is used as a trial solution.
By combining the Galerkin method and the recurrent procedure, a semi-analytical solution
procedure has been developed. It is seen that the solutions obtained with the initial
conditions unconstrained are of smaller residues than those with the initial conditions
constrained. Better accuracy is achieved in terms of satisfying the equation of motion
better. The recurrent-Galerkin method has been used in solving general linear mass–spring
systems and non-linear oscillation problems. Different weighting functions, i.e., power
functions and exponential functions, are also tested to demonstrate the independence
between the trial solution and weighting functions in the theory. General formulae for the
recurrent-Galerkin procedure for multi-DOF systems are also developed. In conclusion,
the Principle of Total Virtual Action has been shown effectively to support the direct
methods, and will find wider applications in solving initial boundary value problems.
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APPENDIX: FORMULATION FOR EXPONENTIAL WEIGHTING FUNCTIONS

Define t= tD, and denote the function

F(p, l)=g
1

0

tp elt dt, (A1)

where p=0,1, 2, 3, . . . , l is real. Then, we have following relations:

(i) when l=0,

F(p, 0)=
1

p+1
, (A2)

(ii) when l$ 0,

F(0, l)=
1
l

(el −1), p=0. (A3)

When pq 0, the recurrence formula is

F(p, l)=
1
l

(el − pF(p−1, l)), pq 0. (A4)

Therefore, for the alternative weighting functions eljt, integrating the left side of equation
(25b) gives

Aji =m(i−1)(i−2)F(i−3, lj )+ cD(i−1)F(i−2, lj )+ kD2F(i−1, lj ), (A5a)

with

A12 =A12 +m, A21 =A21 −m; (A5b)

and integrating the right side of equation (25b) yields

Bj =g
D

0

F(t) eljt dt (A6a)

with

B1 =B1 +mv0, B2 =B2 −mq0. (A6b)


